Serin İklim Tahıllarında Virüs Kaynaklı Gen Susturma: BSMV Kullanımı

Emre İlhan, A. Hakan Eren, Mustafa Erayman
973 217

Öz


ÖZET : Bitkiler doğada canlılıklarını sürdürebilmek için çeşitli savunma mekanizmaları geliştirmişlerdir. RNA ortamlı antiviral savunma mekanizması olarak bilinen Virüs Kaynaklı Gen Susturma (VIGS) bu mekanizmalardan biridir. Virüsle enfekte olmuş bitkilerde, virüs genomuna karşı savunma mekanizması çalışmaktadır. Aynı zamanda hedef geni taşıyan virüs vektörleri homolog içgen mRNA’larını da bozabilmektedir. Bununla birlikte VIGS genin fonksiyonunu anlamada ve fonksiyonel genomik analizleri için kullanılmaktadır. Birçok bitki için virüs vektörleri geliştirilmiştir. Son zamanlarda tahıllar için Arpa Çizgili Mozaik Virüsü (Barley Stripe Mosaic Virus = BSMV) kullanılmaya başlanmıştır. BSMV geniş bir konukçu aralığına sahip pozitif polariteli bir RNA virüsü olup, Hordeivirüs genusunun bir üyesidir. Üç farklı genom RNA (α, β ve γ)’ dan oluşmaktadır. Bu çalışmada BSMV vektörünün çalışma prensibi ve bazı tahıllarda BSMV – VIGS’in uygulamaları hakkında bilgi verilmiştir.

 

Anahtar kelimeler : VIGS, Gen susturma, BSMV, Tahıllar

 

Virus Induced Gene Silencing in Cold Season Cereals: The Use of Bsmv Vector

 

ABSTRACT : Plants developed various defense mechanisms in order to maintain their lives in nature. Virus induced gene silencing (VIGS) which is known as RNA mediated antiviral defense mechanism is one of these mechanisms. In plants with infected unmodified viruses, the mechanism is target against the viral genome. The virus vectors carrying the target genes can be also targeted homogeneous mRNAs. However, VIGS has been widely used for analysis of gene function and functional genomics. These virus vectors were developed for a lot of plants. Recently, Barley Stripe Mosaic Virus (BSMV) has been started utilizing for cereals. BSMV is a positive-sense RNA virus with a broad experimental host range and is the type member of the Hordeivirus genus. The tripartite genome consists of RNAs α, β and γ. In this study, the experimental principles of BSMV vector and the knowledge about BSMV – VIGS studies applied in some cereals were given.

 

Keywords: VIGS, Gene Silencing, BSMV, Cereals

 


Anahtar kelimeler


VIGS, Gen susturma, BSMV, Tahıllar

Tam metin:

PDF


Referanslar


Bennypaul, H. S., Mutti, J. S., Rustgi, S., Kumar, N., Okubara, P. A., Gill, K. S. 2012.Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Funct Integr Genomics, 12:143–156.

Bragg, J.N., Lim, H.S., Jackson, A.O., 2008. Hordeivirus. In: Mahy BWJ, Regen mortel MHVv, eds. Encyclopedia of Virology. 3rd ed. Oxford: Academic Press. pp 459–467.

Brodersen, P. And Voinnet, O., 2006. The diversity of RNA silencing pathways in plants. Trends Genet, 22, 268–280.

Burch-Smith, T.M., Anderson, J.C., Martin, G.B. and DineshKumar, S.P., 2004. Applications and advantages of virusinduced gene silencing for gene function studies in plants. Plant J., 39, 734–746.

Cakir, C., Gillespie, M.E. and Scofield, S.R., 2010. Rapid Determination of Gene Function by Virus-induced Gene Silencing in Wheat and Barley. CropSci. 50:77–84 .

Campbell, J., and Huang, L., 2010. Silencing of Multiple Genes in Wheat Using Barley Stripe Mosaic Virus. Journal of Biotech Research, 2:12-20.

Cloutier, S., McCllum, B.D., Loutre, C., Banks, T.W., Wicker, T., Feuillet, C., Keller, B., Jordan, M.C., 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol, 65:93–106.

Constantin, G.D., Krath, B.N., MacFarlane, S.A., Nicolaisen, M., Johansen, I.E., Lund, O.S., 2004. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J., 40:622–631.

Değirmenci, K., Ertunç, F., 2010. Virüs Enfeksiyonları ile Mücadelede Gen Susturulması ve Uygulamaları. Elektronik Mikrobiyoloji Derg. TR, 8:35-52.

Duan, C.G., Wang, C.H., Guo, H.S., 2012. Application of RNA silencing to plant disease resistance. Silence, 3:5.

Eck, L., Schultz, T., Leach, E.L., Scofield, S.R., Peairs, F.B., Botha, A.M., and Lapitan, N.L.V., 2010. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnology Journal 8, pp. 1023–1032.

Fagard, M., Boutet, S., Morel, J.B., Bellini, C., and Vaucheret, H., 2000. AGO1, QDE-2, and RDE-1 are related proteins required for post transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals, Proceedings of the National Academy of Sciences in the United States of America. vol. 97, no. 21, p. 11650-11654. Grİnlund, M., Olsen, A., Johansen, E.I., Jakobsen, I., 2010. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum. Plant Methods, 6:28.

Gustafson, G. And Armour, S.L., 1986. The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus. Nucleic Acids Res., 14 (9), 3895-3909.

Gustafson, G., Armour, S.L., Gamboa, G.C., Burgett, S.G. and Shepherd, J.W., 1989. Nucleotide sequence of barley stripe mosaic virus RNA alpha: RNA alpha encodes a single polypeptide with homology to corresponding proteins from other viruses. Virology, 170 (2), 370-377.

Gustafson, G., Hunter, B., Hanau, R., Armour, S.L., and Jackson, A.O., 1987. Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma. Virology, 158 (2), 394-40

Hein, I., Barciszewska-Pacak, M., Hrubikova, K., Williamson, S., Dinesen, M, Soenderby, I.E., Sundar, S., Jarmolowski, A., Shirasu, K., Lacomme, C., 2005. Virus- induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol, 138:2155–2164.

Held, M.A., Penning, B., Brandt, A.S., Kessans, S.A., Yong, W., 200 Small- interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci USA, 105: 20534–20539.

Holzberg, G. S., Brosio, P., Gross, C., Pogue, G.P., 2002. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J., 30: 315-327.

Jackson, A.O., Lim, H-S, Bragg, J., Ganesan, U., Lee, M.Y., 2009. Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol, 47: 385–422.

Karakurt, Y., Karakurt, H., 2008. The potential Contribution of RNAi to Plant Nutritional Value. Journal of Molecular Biology&Biotechnology, 1:39-44.

Lee, W.S., Hammond-Kosack, K.E., and Kanyuka, K., 2012. Barley Stripe Mosaic Virus-Mediated Tools for Investigating Gene Function in Cereal Plants and Their Pathogens: VirusInduced Gene Silencing, Host-Mediated Gene Silencing, and Virus-Mediated Overexpression of Heterologous Protein. Plant Physiology, 160:582–590.

Liu, Y.L., Schiff, M., Dinesh-Kumar, S.P., 2002. Virus-induced gene silencing in tomato. Plant J, 2002, 31:777–786.

Lu, R., Martin-Hernandez, A.M., Peart, J.R., Malcuit, I., and Baulcombe, D.C., 2003. Virus-induced gene silencing in plants. Methods, 30:296–303.

Manmathan, H., Shaner, D., Snelling, J., Tisserat, N., and Lapitan, N., 2013. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. Journal of Experimental Botany, 1:1 -12.

Ma, M., Yan, Y., Huang, L., Chen, M., and Zhao, H., 2012. Virusinduced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biology, 12:141.

Oikawa, A., Rahman, A., Yamashita, T., Taira, H., Kidou, S.I., 200 Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation. J Exp Bot, 58: 2617–2625.

Pogue, G.P., Lindbo, J.A., Dawson, W.O., 1998. Tobamovirus Transient Expression Vectors: Tools for Plant Biology and High - Level Expression of Foreign Proteins in Plants. In: Turpen TH (ed), Kluwer Academic Publishers, Dordrecht, The Netherlands.

Robertson, D. 2004. VIGS vectors for gene silencing: Many targets, many tools. Annu Rev Plant Biol, 55:495–519.

Scofield, S. R., Brandt, A.S., 2012. Virus-induced gene silencing in hexaploid wheat using barley stripe mosaic virus vectors. Methods Mol Biol, 894:93-112.

Scofield, S,R., Huang, L, Brandt, A.S., and Gill, B.S., 2005. Development of a Virus-Induced Gene-Silencing System for Hexaploid Wheat and Its Use in Functional Analysis of the Lr21-Mediated Leaf Rust Resistance Pathway. Plant Physiology, 138: 2165–2173.

Scofield, S.R., Nelson, R.S., 2009. Resources for virus-induced gene silencing in the grasses. Plant Physiol, 149: 152–157.

Tai, Y.S., Bragg, J., Edwards, M.C., 2005. Virus vector for gene silencing in wheat. Biotechniques, 39:310–4.

Unver, T., and Budak, H., 2009. Virus-Induced Gene Silencing, a Post Transcriptional Gene Silencing Method. International Journal of Plant Genomics, 2009:1 – 8.

Waterhouse, P.M., and Helliwell, C.A., 2003. Exploring Plant Genomes By RNA-Induced Gene Silencing. Nature, 4:29 –

Yuan, C., Li, C., Yan, L., Jackson, A.O., Liu, Z., 2011. A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots. PLoS ONE, 6(10).




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.