Karar Ağaçlarıyla Öğrenci Verilerinin Sınıflandırılması

Mehmet Ali Alan
1.578 2.480

Öz


Bu çalışmada, karar ağaçları yöntemiyle Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Fakültesi öğrencilerine ait veriler kullanılarak veri madenciliği yapılmıştır. Öğrencilere ait verilerden yararlanarak, hem bu verileri en başarılı sınıflandıran karar ağaçlarına ait algoritma, hem de bu algoritmanın üreteceği sınıflar tespit edilmeye çalışılmıştır. Çalışmanın sonucunda LADTree algoritmasının öğrenci verilerini sınıflandırmada en başarılı algoritma olduğu ve ondokuz değişik sınıf ürettiği anlaşılmıştır.


Anahtar kelimeler


Veri Madenciliği, Sınıflandırma, Karar Ağaçları

Tam metin:

PDF PDF


Referanslar


Albayrak, A.Sait ve Yılmaz, Şebnem (2009), Veri Madenciliği: Karar Ağacı Algoritmaları Ve İMKB Verileri Üzerine Bir Uygulama Süleyman Demirel Üniversitesi, İktisadi ve İdari Bilimler Fakültesi Dergisi, Cilt.14, Sayı.1, ss.31–52

Ayık, Y. Ziya, Özdemir, Abdülkadir ve Yavuz Uğur (2007), Lise Türü Ve Lise Mezuniyet Başarısının, Kazanılan Fakülte İle İlişkisinin Veri Madenciliği Tekniği İle Analizi,. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Cilt 10, Sayı 2, ss.441–454

Baykal, Abdullah ve Coşkun Cengiz (2011), Veri Madenciliğinde Sınıflandırma Karşılaştırılması, http://ab.org.tr/ab11/bildiri/67.pdf, 18.01.2013

Bose, I., Chun, L. A.,Yue, L. V. W., Ines, L. H. W. and Helen, W. O. L., (2009), Business Data Warehouse: The Case of Wal-Mart, Data Mining Applications for Empowering Knowledge Societies, Ed. Hakikur Rahman, Information Science Reference, pp.189-198

Bramer, Max (2007), Principles of Data Mining, Springer, London

Dener, Murat, Dörerler Murat ve Orman Abdullah, (2009), Açık Kaynak Kodlu Veri Madenciliği Programları: WEKA’da Örnek Uygulama, ab.org.tr/ab09/bildiri/42.pdf, 18.01.2013

Dolgun ve Diğerleri (2009, Veri Madenciliğinde Yapısal Olmayan Verilerin Analizi: Metin ve Web Madenciliği, İstatistikçiler Dergisi 2, ss.48-58

Dong-Peng Yang, Li Jin-Lin, Lun Ran and Chao Zhou, (2008), Applications of Data Mining Methods in the Evaluation of Client Credibility, Applications of Data Mining in E-Business and Finance C. Soares et al. (Eds.), IOS Press, Amsterdam, pp.35-43

Giudici, Paolo and Figini, Silvia, (2009), Applied Data Mining For Business and Industry, Second Edition, Wiley Publicition, West Sussex

Han, Jiawei and Kamber, Micheline, (2006), Data Mining: Concepts and Techniques, Second Edition, Morgan Kaufmann Publications, San Francisco

Ivancsy, Renata and Vajk, Istvan, (2005), “Fast Discovery Of Frequent Itemsets: A Cubic Structure-Based Approach”, Informatica 29, pp.71– 78

Jain, Y. K., Yadav, V. K. and Panday, G. S., (2011), “An Efficient Association Rule Hiding Algorithm for Privacy Preserving Data Mining”, International Journal On Computer Science And Engineering, Vol. 3 No. 7, pp. 2792-2798.

Kantardzic, Mehmed , (2003). Data Mining: Concepts, Models, Methods, and Algorithms, John Wiley & Sons J. B. Speed Scientific School, University of Louisville IEEE Computer Society

Kaya Yılmaz, Ertuğrul Ö. Faruk ve Tekin Ramazan (2012), Batman University International participated Science and Culture Symposium, Batman University Journal of Life Sciences, Volume 1, Number 2, ss.403-413

Larose, Daniel T., (2005), Discovering Knowledge In Data, Wiley Publication, New Jersey.

Larose, Daniel T., (2006), Data Mining Methods and Models, A John Wiley & Sons, Inc., Publication, New Jersey

Nisbet, R., Elder, J., and Miner, G., (2009), Handbook of Statistical Analysis and Data Mining Applications, Elsevier Inc, Burlington.

Özkan, Yalçın (2008), Veri Madenciliği Yöntemleri, Papatya Yayınları, İstanbul

Rokach, Lior and Maimon, Oded (2008), Data Mining with Decision Trees, World Scientific, New Jersey

Tadesse, T., Wardlow, B. And Hayes, M.J. (2009), The Application of Data Mining for Drought Monitoring and Prediction, Data Mining Applications

for Empowering Knowledge Societies, Edited by Hakikur Rahman, Information Science Reference, New York, pp.280-291

Silahtaroğlu, Gökhan (2008), Veri Madenciliği, Papatya Yayınları, İstanbul

Wang, Chien-Hua and Lee, Wei-Hsuan & Pang, Chin-Tzong, (2010). “Applying Fuzzy FP-Growth To Mine Fuzzy Association Rules”, World Academy of Science, Engineering And Technology, 65, pp. 956-962

Wu, Tong and Li Xiangyang (2003), Data Storage and Management, The Handbook of Data Mining, Edited by. Nong Ye, Lawrence Erlbaum Associates Publishers. London, pp.393-407

Weiss, Sholom M. And Zhang, Tong (2003), Performance Analysis and Evaluation, The Handbook of Data Mining, Edited by. Nong Ye, Lawrence Erlbaum Associates Publishers. London, pp.436-439




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.